SlideShare a Scribd company logo
Why 
dynamic & adaptive
thresholds
matters
anders håål, ingenjörsbyn ab 
anders.haal@ingby.com
@thenodon
Bischeck ­  
dynamic & adaptive
thresholds 
for Nagios




       www.bischeck.org
Threshold
What is the limitation with static threshold?


✗ Not static
✗ Load varies throughout the day, week

✗ To many or to few alarms

✗ Collecting and thresholding in the 


  same context
✗ Based on the current measurement

✗ Do not consider dependency to other services
How to make thresholds
 dynamic & adaptive? 
{example 1}
“Database table size should not be bigger then 5 % of 
yesterdays max size “
{example 1}
 “Database table size should not be bigger then 5 % of max 
 size yesterday“

200000

180000

160000

140000                                                                                     table size < max(yesterday)*1.05
120000

100000
                                                                                           Table size
 80000

 60000

 40000

 20000

     0
         7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23




                               Yesterday                                                                Today
{example 2}


“Number of on­line users should not be more then 10 % 
higher then the average number of on­line users for the 
last 10 data points”
{example 2}


“Number of on­line users should not be more then 10 % 
higher then the average number of on­line users for the 
last 10 data points”



                    users < avg(X0+X1+.....+X9)*1.1

                    Where X is the historical on-line users
                    data points
{example 3}


“The number of orders with errors should be lower then 5% 
of the total number of registered orders”
{example 3}


“The number of orders with errors should be lower then 5% 
of the total number of registered orders”




  Total #orders


#orders with errors   < 0.05 * (Total #orders)
{example 4}
“Message queue size should be above the defined Friday 
threshold profile”
    count
 




             time of the day
{example 4}
“Message queue size should be above the defined Friday 
threshold profile”
    count
 



                               count
             time of the day




                                         time of the day
How to make thresholds
     dynamic & adaptive? 


✗ Time profiles
✗ Historical data points

✗ Math and statistical operations
We did not want a check_XYZ hack 

        We wanted a tool
Collecting
Collecting

Separation


             Thresholding
Collecting




Historical data
Collecting




           Logic

Historical data
Collecting




 Day profile

           Logic

Historical data
Collecting




     Day profile

Calender      Logic

   Historical data
Collecting




     Day profile

Calender      Logic

   Historical data




       Nagios
Collecting
                         Scheduling




           Day profile

    Calender        Logic

       Historical data
             Server
            Interface

OpenTSDB     Nagios      XYZ
Nagios Conference 2012 - Anders Haal - Why dynamic and adaptive thresholds matters
Nagios Conference 2012 - Anders Haal - Why dynamic and adaptive thresholds matters
bischeck basics
●   Configuration like Nagios – host, service but 
    also service item
    ●   Host is just a container of the rest
    ●   Service specify the connection and scheduling
    ●   Service item specify the “query” and the threshold 
        class to use
●   Host and service name must be the same as in 
    the Nagios configuration
Threshold – 24 hour day profile 
●   Divide the day in 24 hour points, where every 
    point can be:
    ●   Static value
    ●   Dynamic value 
         –   Math expression on single value or range of data from 
             the cache
         –   Based on cached data points retrieved by
              ●   Index – single value or index range
              ●   Time – single value (closest) or time range (between)
....
<!­­ 12:00 Static ­­>
<hour>7000</hour>
....
....
<!­­ 12:00 Static ­­>
<hour>7000</hour>


<!­­ 13:00 Adaptive ­­>     
<hour>erpserver­orders­ediOrders[0] / 3</hour>
....
....
<!­­ 12:00 Static ­­>
<hour>7000</hour>


<!­­ 13:00 Adaptive ­­>     
<hour>erpserver­orders­ediOrders[0] / 3</hour>


<!­­ 14:00 Adaptive with math function ­­>
<hour>avg(erpserver­orders­ediOrders[­30M:­60M]) / 2</hour>
....
Threshold – 24 hour day profile 
Between every “full” hour a linear equation is 
calculated 
                                                       Day profile
       60000




       50000




       40000




       30000




       20000




       10000




           0
               0   1   2   3   4   5   6   7   8   9    10    11    12   13   14   15   16   17   18   19   20   21   22   23

                                                             Hour
Threshold – 24 hour day profile 
●   Connect calender to the day profile and evaluate 
    according to the following order:
    1. Month and day of month 
    2.Week and day of week 
    3.Day in month 
    4.Day in the week 
    5.Month 
    6.Week
●   Holiday – exception days  
And more....
●   Multi­threaded and multi­scheduling schema per service
    ●  interval
     ● cron 
●   Data collection – jdbc, livestatus, internal cache
●   Virtual services
●   Date macros in execution statements 
●   Customize 
    ●  connection (service classes)
     ● execution (service item classes)
     ● thresholds (threshold classes) 
     ● server integration (server classes)
●   XML configuration supported with WEBui (beta)
●   GPL 2 license
Future
●   Improved time series database
●   Patterns/baselines
●   More statistic functions
●   “Sensors” ­ alarms on multiple/aggregated data points
●   Any ideas?
Infrastructure monitoring
 
Application performance monitoring [APM]

Business activity monitoring [BAM]

Operational Business intelligence [OBI]
Questions & Feedback 




Pictures – Creative Commons
www.flickr.com/photos/loneprimate/4017405677
www.flickr.com/photos/catatronic/2397319483
www.flickr.com/photos/dtrimarchi/6815004766
www.flickr.com/photos/bikeracer/6740232
Ad

More Related Content

What's hot (20)

Webinar: Managing Real Time Risk Analytics with MongoDB
Webinar: Managing Real Time Risk Analytics with MongoDB Webinar: Managing Real Time Risk Analytics with MongoDB
Webinar: Managing Real Time Risk Analytics with MongoDB
MongoDB
 
Clickhouse MeetUp@ContentSquare - ContentSquare's Experience Sharing
Clickhouse MeetUp@ContentSquare - ContentSquare's Experience SharingClickhouse MeetUp@ContentSquare - ContentSquare's Experience Sharing
Clickhouse MeetUp@ContentSquare - ContentSquare's Experience Sharing
Vianney FOUCAULT
 
MongoDB - Warehouse and Aggregator of Events
MongoDB - Warehouse and Aggregator of EventsMongoDB - Warehouse and Aggregator of Events
MongoDB - Warehouse and Aggregator of Events
Maxim Ligus
 
Data Analytics with Druid
Data Analytics with DruidData Analytics with Druid
Data Analytics with Druid
Yousun Jeong
 
ManetoDB: Key/Value storage, BigData in Open Stack_Сергей Ковалев, Илья Свиридов
ManetoDB: Key/Value storage, BigData in Open Stack_Сергей Ковалев, Илья СвиридовManetoDB: Key/Value storage, BigData in Open Stack_Сергей Ковалев, Илья Свиридов
ManetoDB: Key/Value storage, BigData in Open Stack_Сергей Ковалев, Илья Свиридов
GeeksLab Odessa
 
AWS Community Nordics Virtual Meetup
AWS Community Nordics Virtual MeetupAWS Community Nordics Virtual Meetup
AWS Community Nordics Virtual Meetup
Anahit Pogosova
 
MongoDB Workshop Universidad de Huelva
MongoDB Workshop Universidad de HuelvaMongoDB Workshop Universidad de Huelva
MongoDB Workshop Universidad de Huelva
Juan Antonio Roy Couto
 
Workshop 20140522 BigQuery Implementation
Workshop 20140522   BigQuery ImplementationWorkshop 20140522   BigQuery Implementation
Workshop 20140522 BigQuery Implementation
Simon Su
 
Tweaking perfomance on high-load projects_Думанский Дмитрий
Tweaking perfomance on high-load projects_Думанский ДмитрийTweaking perfomance on high-load projects_Думанский Дмитрий
Tweaking perfomance on high-load projects_Думанский Дмитрий
GeeksLab Odessa
 
MongoDB + Spring
MongoDB + SpringMongoDB + Spring
MongoDB + Spring
Norberto Leite
 
MongoDB Schema Design Tips & Tricks
MongoDB Schema Design Tips & TricksMongoDB Schema Design Tips & Tricks
MongoDB Schema Design Tips & Tricks
Juan Antonio Roy Couto
 
Real-time Analytics with Apache Flink and Druid
Real-time Analytics with Apache Flink and DruidReal-time Analytics with Apache Flink and Druid
Real-time Analytics with Apache Flink and Druid
Jan Graßegger
 
Introducing MongoDB Stitch, Backend-as-a-Service from MongoDB
Introducing MongoDB Stitch, Backend-as-a-Service from MongoDBIntroducing MongoDB Stitch, Backend-as-a-Service from MongoDB
Introducing MongoDB Stitch, Backend-as-a-Service from MongoDB
MongoDB
 
Mongo db improve the performance of your application codemotion2016
Mongo db improve the performance of your application codemotion2016Mongo db improve the performance of your application codemotion2016
Mongo db improve the performance of your application codemotion2016
Juan Antonio Roy Couto
 
High Performance Applications with MongoDB
High Performance Applications with MongoDBHigh Performance Applications with MongoDB
High Performance Applications with MongoDB
MongoDB
 
MongoDB .local Bengaluru 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Bengaluru 2019: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local Bengaluru 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Bengaluru 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local Chicago 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Chicago 2019: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local Chicago 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Chicago 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
Programmatic Bidding Data Streams & Druid
Programmatic Bidding Data Streams & DruidProgrammatic Bidding Data Streams & Druid
Programmatic Bidding Data Streams & Druid
Charles Allen
 
21st Athens Big Data Meetup - 1st Talk - Fast and simple data exploration wit...
21st Athens Big Data Meetup - 1st Talk - Fast and simple data exploration wit...21st Athens Big Data Meetup - 1st Talk - Fast and simple data exploration wit...
21st Athens Big Data Meetup - 1st Talk - Fast and simple data exploration wit...
Athens Big Data
 
BigQuery JavaScript User-Defined Functions by THOMAS PARK and FELIPE HOFFA at...
BigQuery JavaScript User-Defined Functions by THOMAS PARK and FELIPE HOFFA at...BigQuery JavaScript User-Defined Functions by THOMAS PARK and FELIPE HOFFA at...
BigQuery JavaScript User-Defined Functions by THOMAS PARK and FELIPE HOFFA at...
Big Data Spain
 
Webinar: Managing Real Time Risk Analytics with MongoDB
Webinar: Managing Real Time Risk Analytics with MongoDB Webinar: Managing Real Time Risk Analytics with MongoDB
Webinar: Managing Real Time Risk Analytics with MongoDB
MongoDB
 
Clickhouse MeetUp@ContentSquare - ContentSquare's Experience Sharing
Clickhouse MeetUp@ContentSquare - ContentSquare's Experience SharingClickhouse MeetUp@ContentSquare - ContentSquare's Experience Sharing
Clickhouse MeetUp@ContentSquare - ContentSquare's Experience Sharing
Vianney FOUCAULT
 
MongoDB - Warehouse and Aggregator of Events
MongoDB - Warehouse and Aggregator of EventsMongoDB - Warehouse and Aggregator of Events
MongoDB - Warehouse and Aggregator of Events
Maxim Ligus
 
Data Analytics with Druid
Data Analytics with DruidData Analytics with Druid
Data Analytics with Druid
Yousun Jeong
 
ManetoDB: Key/Value storage, BigData in Open Stack_Сергей Ковалев, Илья Свиридов
ManetoDB: Key/Value storage, BigData in Open Stack_Сергей Ковалев, Илья СвиридовManetoDB: Key/Value storage, BigData in Open Stack_Сергей Ковалев, Илья Свиридов
ManetoDB: Key/Value storage, BigData in Open Stack_Сергей Ковалев, Илья Свиридов
GeeksLab Odessa
 
AWS Community Nordics Virtual Meetup
AWS Community Nordics Virtual MeetupAWS Community Nordics Virtual Meetup
AWS Community Nordics Virtual Meetup
Anahit Pogosova
 
MongoDB Workshop Universidad de Huelva
MongoDB Workshop Universidad de HuelvaMongoDB Workshop Universidad de Huelva
MongoDB Workshop Universidad de Huelva
Juan Antonio Roy Couto
 
Workshop 20140522 BigQuery Implementation
Workshop 20140522   BigQuery ImplementationWorkshop 20140522   BigQuery Implementation
Workshop 20140522 BigQuery Implementation
Simon Su
 
Tweaking perfomance on high-load projects_Думанский Дмитрий
Tweaking perfomance on high-load projects_Думанский ДмитрийTweaking perfomance on high-load projects_Думанский Дмитрий
Tweaking perfomance on high-load projects_Думанский Дмитрий
GeeksLab Odessa
 
Real-time Analytics with Apache Flink and Druid
Real-time Analytics with Apache Flink and DruidReal-time Analytics with Apache Flink and Druid
Real-time Analytics with Apache Flink and Druid
Jan Graßegger
 
Introducing MongoDB Stitch, Backend-as-a-Service from MongoDB
Introducing MongoDB Stitch, Backend-as-a-Service from MongoDBIntroducing MongoDB Stitch, Backend-as-a-Service from MongoDB
Introducing MongoDB Stitch, Backend-as-a-Service from MongoDB
MongoDB
 
Mongo db improve the performance of your application codemotion2016
Mongo db improve the performance of your application codemotion2016Mongo db improve the performance of your application codemotion2016
Mongo db improve the performance of your application codemotion2016
Juan Antonio Roy Couto
 
High Performance Applications with MongoDB
High Performance Applications with MongoDBHigh Performance Applications with MongoDB
High Performance Applications with MongoDB
MongoDB
 
MongoDB .local Bengaluru 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Bengaluru 2019: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local Bengaluru 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Bengaluru 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local Chicago 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Chicago 2019: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local Chicago 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Chicago 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
Programmatic Bidding Data Streams & Druid
Programmatic Bidding Data Streams & DruidProgrammatic Bidding Data Streams & Druid
Programmatic Bidding Data Streams & Druid
Charles Allen
 
21st Athens Big Data Meetup - 1st Talk - Fast and simple data exploration wit...
21st Athens Big Data Meetup - 1st Talk - Fast and simple data exploration wit...21st Athens Big Data Meetup - 1st Talk - Fast and simple data exploration wit...
21st Athens Big Data Meetup - 1st Talk - Fast and simple data exploration wit...
Athens Big Data
 
BigQuery JavaScript User-Defined Functions by THOMAS PARK and FELIPE HOFFA at...
BigQuery JavaScript User-Defined Functions by THOMAS PARK and FELIPE HOFFA at...BigQuery JavaScript User-Defined Functions by THOMAS PARK and FELIPE HOFFA at...
BigQuery JavaScript User-Defined Functions by THOMAS PARK and FELIPE HOFFA at...
Big Data Spain
 

Similar to Nagios Conference 2012 - Anders Haal - Why dynamic and adaptive thresholds matters (20)

Big Query - Women Techmarkers (Ukraine - March 2014)
Big Query - Women Techmarkers (Ukraine - March 2014)Big Query - Women Techmarkers (Ukraine - March 2014)
Big Query - Women Techmarkers (Ukraine - March 2014)
Ido Green
 
Palringo AWS London Summit 2017
Palringo AWS London Summit 2017Palringo AWS London Summit 2017
Palringo AWS London Summit 2017
PhilipBasford
 
Webinar: Dyn + DataStax - helping companies deliver exceptional end-user expe...
Webinar: Dyn + DataStax - helping companies deliver exceptional end-user expe...Webinar: Dyn + DataStax - helping companies deliver exceptional end-user expe...
Webinar: Dyn + DataStax - helping companies deliver exceptional end-user expe...
DataStax
 
Mongo db 2.4 time series data - Brignoli
Mongo db 2.4 time series data - BrignoliMongo db 2.4 time series data - Brignoli
Mongo db 2.4 time series data - Brignoli
Codemotion
 
02_Chapter_WorkLoads_DataModeling_Mongodb.pdf
02_Chapter_WorkLoads_DataModeling_Mongodb.pdf02_Chapter_WorkLoads_DataModeling_Mongodb.pdf
02_Chapter_WorkLoads_DataModeling_Mongodb.pdf
hieuminhpham1001
 
02_Chapter_WorkLoads_DataModeling_Mongodb.pdf
02_Chapter_WorkLoads_DataModeling_Mongodb.pdf02_Chapter_WorkLoads_DataModeling_Mongodb.pdf
02_Chapter_WorkLoads_DataModeling_Mongodb.pdf
hieuminhpham1001
 
MongoDB for Time Series Data
MongoDB for Time Series DataMongoDB for Time Series Data
MongoDB for Time Series Data
MongoDB
 
Benchmark Showdown: Which Relational Database is the Fastest on AWS?
Benchmark Showdown: Which Relational Database is the Fastest on AWS?Benchmark Showdown: Which Relational Database is the Fastest on AWS?
Benchmark Showdown: Which Relational Database is the Fastest on AWS?
Clustrix
 
How we evolved data pipeline at Celtra and what we learned along the way
How we evolved data pipeline at Celtra and what we learned along the wayHow we evolved data pipeline at Celtra and what we learned along the way
How we evolved data pipeline at Celtra and what we learned along the way
Grega Kespret
 
Changing the game with cloud dw
Changing the game with cloud dwChanging the game with cloud dw
Changing the game with cloud dw
elephantscale
 
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander ZaitsevClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
Altinity Ltd
 
Managing your Black Friday Logs - Antonio Bonuccelli - Codemotion Rome 2018
Managing your Black Friday Logs - Antonio Bonuccelli - Codemotion Rome 2018Managing your Black Friday Logs - Antonio Bonuccelli - Codemotion Rome 2018
Managing your Black Friday Logs - Antonio Bonuccelli - Codemotion Rome 2018
Codemotion
 
Re-Engineering PostgreSQL as a Time-Series Database
Re-Engineering PostgreSQL as a Time-Series DatabaseRe-Engineering PostgreSQL as a Time-Series Database
Re-Engineering PostgreSQL as a Time-Series Database
All Things Open
 
Big objects in Salesforce Technology
Big objects in Salesforce TechnologyBig objects in Salesforce Technology
Big objects in Salesforce Technology
Divya Agrawal
 
Time Series Databases for IoT (On-premises and Azure)
Time Series Databases for IoT (On-premises and Azure)Time Series Databases for IoT (On-premises and Azure)
Time Series Databases for IoT (On-premises and Azure)
Ivo Andreev
 
An overview of modern scalable web development
An overview of modern scalable web developmentAn overview of modern scalable web development
An overview of modern scalable web development
Tung Nguyen
 
Self-serve analytics journey at Celtra: Snowflake, Spark, and Databricks
Self-serve analytics journey at Celtra: Snowflake, Spark, and DatabricksSelf-serve analytics journey at Celtra: Snowflake, Spark, and Databricks
Self-serve analytics journey at Celtra: Snowflake, Spark, and Databricks
Grega Kespret
 
Levelling up your data infrastructure
Levelling up your data infrastructureLevelling up your data infrastructure
Levelling up your data infrastructure
Simon Belak
 
real time data processing is a tsubtopic in the topic in the domain bigdata
real time data processing is a tsubtopic in the topic in the domain bigdatareal time data processing is a tsubtopic in the topic in the domain bigdata
real time data processing is a tsubtopic in the topic in the domain bigdata
ArasuVishnu
 
Microsoft Azure Big Data Analytics
Microsoft Azure Big Data AnalyticsMicrosoft Azure Big Data Analytics
Microsoft Azure Big Data Analytics
Mark Kromer
 
Big Query - Women Techmarkers (Ukraine - March 2014)
Big Query - Women Techmarkers (Ukraine - March 2014)Big Query - Women Techmarkers (Ukraine - March 2014)
Big Query - Women Techmarkers (Ukraine - March 2014)
Ido Green
 
Palringo AWS London Summit 2017
Palringo AWS London Summit 2017Palringo AWS London Summit 2017
Palringo AWS London Summit 2017
PhilipBasford
 
Webinar: Dyn + DataStax - helping companies deliver exceptional end-user expe...
Webinar: Dyn + DataStax - helping companies deliver exceptional end-user expe...Webinar: Dyn + DataStax - helping companies deliver exceptional end-user expe...
Webinar: Dyn + DataStax - helping companies deliver exceptional end-user expe...
DataStax
 
Mongo db 2.4 time series data - Brignoli
Mongo db 2.4 time series data - BrignoliMongo db 2.4 time series data - Brignoli
Mongo db 2.4 time series data - Brignoli
Codemotion
 
02_Chapter_WorkLoads_DataModeling_Mongodb.pdf
02_Chapter_WorkLoads_DataModeling_Mongodb.pdf02_Chapter_WorkLoads_DataModeling_Mongodb.pdf
02_Chapter_WorkLoads_DataModeling_Mongodb.pdf
hieuminhpham1001
 
02_Chapter_WorkLoads_DataModeling_Mongodb.pdf
02_Chapter_WorkLoads_DataModeling_Mongodb.pdf02_Chapter_WorkLoads_DataModeling_Mongodb.pdf
02_Chapter_WorkLoads_DataModeling_Mongodb.pdf
hieuminhpham1001
 
MongoDB for Time Series Data
MongoDB for Time Series DataMongoDB for Time Series Data
MongoDB for Time Series Data
MongoDB
 
Benchmark Showdown: Which Relational Database is the Fastest on AWS?
Benchmark Showdown: Which Relational Database is the Fastest on AWS?Benchmark Showdown: Which Relational Database is the Fastest on AWS?
Benchmark Showdown: Which Relational Database is the Fastest on AWS?
Clustrix
 
How we evolved data pipeline at Celtra and what we learned along the way
How we evolved data pipeline at Celtra and what we learned along the wayHow we evolved data pipeline at Celtra and what we learned along the way
How we evolved data pipeline at Celtra and what we learned along the way
Grega Kespret
 
Changing the game with cloud dw
Changing the game with cloud dwChanging the game with cloud dw
Changing the game with cloud dw
elephantscale
 
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander ZaitsevClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
Altinity Ltd
 
Managing your Black Friday Logs - Antonio Bonuccelli - Codemotion Rome 2018
Managing your Black Friday Logs - Antonio Bonuccelli - Codemotion Rome 2018Managing your Black Friday Logs - Antonio Bonuccelli - Codemotion Rome 2018
Managing your Black Friday Logs - Antonio Bonuccelli - Codemotion Rome 2018
Codemotion
 
Re-Engineering PostgreSQL as a Time-Series Database
Re-Engineering PostgreSQL as a Time-Series DatabaseRe-Engineering PostgreSQL as a Time-Series Database
Re-Engineering PostgreSQL as a Time-Series Database
All Things Open
 
Big objects in Salesforce Technology
Big objects in Salesforce TechnologyBig objects in Salesforce Technology
Big objects in Salesforce Technology
Divya Agrawal
 
Time Series Databases for IoT (On-premises and Azure)
Time Series Databases for IoT (On-premises and Azure)Time Series Databases for IoT (On-premises and Azure)
Time Series Databases for IoT (On-premises and Azure)
Ivo Andreev
 
An overview of modern scalable web development
An overview of modern scalable web developmentAn overview of modern scalable web development
An overview of modern scalable web development
Tung Nguyen
 
Self-serve analytics journey at Celtra: Snowflake, Spark, and Databricks
Self-serve analytics journey at Celtra: Snowflake, Spark, and DatabricksSelf-serve analytics journey at Celtra: Snowflake, Spark, and Databricks
Self-serve analytics journey at Celtra: Snowflake, Spark, and Databricks
Grega Kespret
 
Levelling up your data infrastructure
Levelling up your data infrastructureLevelling up your data infrastructure
Levelling up your data infrastructure
Simon Belak
 
real time data processing is a tsubtopic in the topic in the domain bigdata
real time data processing is a tsubtopic in the topic in the domain bigdatareal time data processing is a tsubtopic in the topic in the domain bigdata
real time data processing is a tsubtopic in the topic in the domain bigdata
ArasuVishnu
 
Microsoft Azure Big Data Analytics
Microsoft Azure Big Data AnalyticsMicrosoft Azure Big Data Analytics
Microsoft Azure Big Data Analytics
Mark Kromer
 
Ad

More from Nagios (20)

Nagios XI Best Practices
Nagios XI Best PracticesNagios XI Best Practices
Nagios XI Best Practices
Nagios
 
Jesse Olson - Nagios Log Server Architecture Overview
Jesse Olson - Nagios Log Server Architecture OverviewJesse Olson - Nagios Log Server Architecture Overview
Jesse Olson - Nagios Log Server Architecture Overview
Nagios
 
Trevor McDonald - Nagios XI Under The Hood
Trevor McDonald  - Nagios XI Under The HoodTrevor McDonald  - Nagios XI Under The Hood
Trevor McDonald - Nagios XI Under The Hood
Nagios
 
Sean Falzon - Nagios - Resilient Notifications
Sean Falzon - Nagios - Resilient NotificationsSean Falzon - Nagios - Resilient Notifications
Sean Falzon - Nagios - Resilient Notifications
Nagios
 
Marcus Rochelle - Landis+Gyr - Monitoring with Nagios Enterprise Edition
Marcus Rochelle - Landis+Gyr - Monitoring with Nagios Enterprise EditionMarcus Rochelle - Landis+Gyr - Monitoring with Nagios Enterprise Edition
Marcus Rochelle - Landis+Gyr - Monitoring with Nagios Enterprise Edition
Nagios
 
Janice Singh - Writing Custom Nagios Plugins
Janice Singh - Writing Custom Nagios PluginsJanice Singh - Writing Custom Nagios Plugins
Janice Singh - Writing Custom Nagios Plugins
Nagios
 
Dave Williams - Nagios Log Server - Practical Experience
Dave Williams - Nagios Log Server - Practical ExperienceDave Williams - Nagios Log Server - Practical Experience
Dave Williams - Nagios Log Server - Practical Experience
Nagios
 
Mike Weber - Nagios and Group Deployment of Service Checks
Mike Weber - Nagios and Group Deployment of Service ChecksMike Weber - Nagios and Group Deployment of Service Checks
Mike Weber - Nagios and Group Deployment of Service Checks
Nagios
 
Mike Guthrie - Revamping Your 10 Year Old Nagios Installation
Mike Guthrie - Revamping Your 10 Year Old Nagios InstallationMike Guthrie - Revamping Your 10 Year Old Nagios Installation
Mike Guthrie - Revamping Your 10 Year Old Nagios Installation
Nagios
 
Bryan Heden - Agile Networks - Using Nagios XI as the platform for Monitoring...
Bryan Heden - Agile Networks - Using Nagios XI as the platform for Monitoring...Bryan Heden - Agile Networks - Using Nagios XI as the platform for Monitoring...
Bryan Heden - Agile Networks - Using Nagios XI as the platform for Monitoring...
Nagios
 
Matt Bruzek - Monitoring Your Public Cloud With Nagios
Matt Bruzek - Monitoring Your Public Cloud With NagiosMatt Bruzek - Monitoring Your Public Cloud With Nagios
Matt Bruzek - Monitoring Your Public Cloud With Nagios
Nagios
 
Lee Myers - What To Do When Nagios Notification Don't Meet Your Needs.
Lee Myers - What To Do When Nagios Notification Don't Meet Your Needs.Lee Myers - What To Do When Nagios Notification Don't Meet Your Needs.
Lee Myers - What To Do When Nagios Notification Don't Meet Your Needs.
Nagios
 
Eric Loyd - Fractal Nagios
Eric Loyd - Fractal NagiosEric Loyd - Fractal Nagios
Eric Loyd - Fractal Nagios
Nagios
 
Marcelo Perazolo, Lead Software Architect, IBM Corporation - Monitoring a Pow...
Marcelo Perazolo, Lead Software Architect, IBM Corporation - Monitoring a Pow...Marcelo Perazolo, Lead Software Architect, IBM Corporation - Monitoring a Pow...
Marcelo Perazolo, Lead Software Architect, IBM Corporation - Monitoring a Pow...
Nagios
 
Thomas Schmainda - Tracking Boeing Satellites With Nagios - Nagios World Conf...
Thomas Schmainda - Tracking Boeing Satellites With Nagios - Nagios World Conf...Thomas Schmainda - Tracking Boeing Satellites With Nagios - Nagios World Conf...
Thomas Schmainda - Tracking Boeing Satellites With Nagios - Nagios World Conf...
Nagios
 
Nagios World Conference 2015 - Scott Wilkerson Opening
Nagios World Conference 2015 - Scott Wilkerson OpeningNagios World Conference 2015 - Scott Wilkerson Opening
Nagios World Conference 2015 - Scott Wilkerson Opening
Nagios
 
Nrpe - Nagios Remote Plugin Executor. NRPE plugin for Nagios Core
Nrpe - Nagios Remote Plugin Executor. NRPE plugin for Nagios CoreNrpe - Nagios Remote Plugin Executor. NRPE plugin for Nagios Core
Nrpe - Nagios Remote Plugin Executor. NRPE plugin for Nagios Core
Nagios
 
Nagios Log Server - Features
Nagios Log Server - FeaturesNagios Log Server - Features
Nagios Log Server - Features
Nagios
 
Nagios Network Analyzer - Features
Nagios Network Analyzer - FeaturesNagios Network Analyzer - Features
Nagios Network Analyzer - Features
Nagios
 
Nagios Conference 2014 - Dorance Martinez Cortes - Customizing Nagios
Nagios Conference 2014 - Dorance Martinez Cortes - Customizing NagiosNagios Conference 2014 - Dorance Martinez Cortes - Customizing Nagios
Nagios Conference 2014 - Dorance Martinez Cortes - Customizing Nagios
Nagios
 
Nagios XI Best Practices
Nagios XI Best PracticesNagios XI Best Practices
Nagios XI Best Practices
Nagios
 
Jesse Olson - Nagios Log Server Architecture Overview
Jesse Olson - Nagios Log Server Architecture OverviewJesse Olson - Nagios Log Server Architecture Overview
Jesse Olson - Nagios Log Server Architecture Overview
Nagios
 
Trevor McDonald - Nagios XI Under The Hood
Trevor McDonald  - Nagios XI Under The HoodTrevor McDonald  - Nagios XI Under The Hood
Trevor McDonald - Nagios XI Under The Hood
Nagios
 
Sean Falzon - Nagios - Resilient Notifications
Sean Falzon - Nagios - Resilient NotificationsSean Falzon - Nagios - Resilient Notifications
Sean Falzon - Nagios - Resilient Notifications
Nagios
 
Marcus Rochelle - Landis+Gyr - Monitoring with Nagios Enterprise Edition
Marcus Rochelle - Landis+Gyr - Monitoring with Nagios Enterprise EditionMarcus Rochelle - Landis+Gyr - Monitoring with Nagios Enterprise Edition
Marcus Rochelle - Landis+Gyr - Monitoring with Nagios Enterprise Edition
Nagios
 
Janice Singh - Writing Custom Nagios Plugins
Janice Singh - Writing Custom Nagios PluginsJanice Singh - Writing Custom Nagios Plugins
Janice Singh - Writing Custom Nagios Plugins
Nagios
 
Dave Williams - Nagios Log Server - Practical Experience
Dave Williams - Nagios Log Server - Practical ExperienceDave Williams - Nagios Log Server - Practical Experience
Dave Williams - Nagios Log Server - Practical Experience
Nagios
 
Mike Weber - Nagios and Group Deployment of Service Checks
Mike Weber - Nagios and Group Deployment of Service ChecksMike Weber - Nagios and Group Deployment of Service Checks
Mike Weber - Nagios and Group Deployment of Service Checks
Nagios
 
Mike Guthrie - Revamping Your 10 Year Old Nagios Installation
Mike Guthrie - Revamping Your 10 Year Old Nagios InstallationMike Guthrie - Revamping Your 10 Year Old Nagios Installation
Mike Guthrie - Revamping Your 10 Year Old Nagios Installation
Nagios
 
Bryan Heden - Agile Networks - Using Nagios XI as the platform for Monitoring...
Bryan Heden - Agile Networks - Using Nagios XI as the platform for Monitoring...Bryan Heden - Agile Networks - Using Nagios XI as the platform for Monitoring...
Bryan Heden - Agile Networks - Using Nagios XI as the platform for Monitoring...
Nagios
 
Matt Bruzek - Monitoring Your Public Cloud With Nagios
Matt Bruzek - Monitoring Your Public Cloud With NagiosMatt Bruzek - Monitoring Your Public Cloud With Nagios
Matt Bruzek - Monitoring Your Public Cloud With Nagios
Nagios
 
Lee Myers - What To Do When Nagios Notification Don't Meet Your Needs.
Lee Myers - What To Do When Nagios Notification Don't Meet Your Needs.Lee Myers - What To Do When Nagios Notification Don't Meet Your Needs.
Lee Myers - What To Do When Nagios Notification Don't Meet Your Needs.
Nagios
 
Eric Loyd - Fractal Nagios
Eric Loyd - Fractal NagiosEric Loyd - Fractal Nagios
Eric Loyd - Fractal Nagios
Nagios
 
Marcelo Perazolo, Lead Software Architect, IBM Corporation - Monitoring a Pow...
Marcelo Perazolo, Lead Software Architect, IBM Corporation - Monitoring a Pow...Marcelo Perazolo, Lead Software Architect, IBM Corporation - Monitoring a Pow...
Marcelo Perazolo, Lead Software Architect, IBM Corporation - Monitoring a Pow...
Nagios
 
Thomas Schmainda - Tracking Boeing Satellites With Nagios - Nagios World Conf...
Thomas Schmainda - Tracking Boeing Satellites With Nagios - Nagios World Conf...Thomas Schmainda - Tracking Boeing Satellites With Nagios - Nagios World Conf...
Thomas Schmainda - Tracking Boeing Satellites With Nagios - Nagios World Conf...
Nagios
 
Nagios World Conference 2015 - Scott Wilkerson Opening
Nagios World Conference 2015 - Scott Wilkerson OpeningNagios World Conference 2015 - Scott Wilkerson Opening
Nagios World Conference 2015 - Scott Wilkerson Opening
Nagios
 
Nrpe - Nagios Remote Plugin Executor. NRPE plugin for Nagios Core
Nrpe - Nagios Remote Plugin Executor. NRPE plugin for Nagios CoreNrpe - Nagios Remote Plugin Executor. NRPE plugin for Nagios Core
Nrpe - Nagios Remote Plugin Executor. NRPE plugin for Nagios Core
Nagios
 
Nagios Log Server - Features
Nagios Log Server - FeaturesNagios Log Server - Features
Nagios Log Server - Features
Nagios
 
Nagios Network Analyzer - Features
Nagios Network Analyzer - FeaturesNagios Network Analyzer - Features
Nagios Network Analyzer - Features
Nagios
 
Nagios Conference 2014 - Dorance Martinez Cortes - Customizing Nagios
Nagios Conference 2014 - Dorance Martinez Cortes - Customizing NagiosNagios Conference 2014 - Dorance Martinez Cortes - Customizing Nagios
Nagios Conference 2014 - Dorance Martinez Cortes - Customizing Nagios
Nagios
 
Ad

Recently uploaded (20)

#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Play It Safe: Manage Security Risks - Google Certificate
Play It Safe: Manage Security Risks - Google CertificatePlay It Safe: Manage Security Risks - Google Certificate
Play It Safe: Manage Security Risks - Google Certificate
VICTOR MAESTRE RAMIREZ
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Raffi Khatchadourian
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Vaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without HallucinationsVaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without Hallucinations
john409870
 
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptxWebinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
MSP360
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
MINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PRMINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PR
MIND CTI
 
TrsLabs - Leverage the Power of UPI Payments
TrsLabs - Leverage the Power of UPI PaymentsTrsLabs - Leverage the Power of UPI Payments
TrsLabs - Leverage the Power of UPI Payments
Trs Labs
 
The Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdfThe Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdf
Precisely
 
TrsLabs - AI Agents for All - Chatbots to Multi-Agents Systems
TrsLabs - AI Agents for All - Chatbots to Multi-Agents SystemsTrsLabs - AI Agents for All - Chatbots to Multi-Agents Systems
TrsLabs - AI Agents for All - Chatbots to Multi-Agents Systems
Trs Labs
 
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Raffi Khatchadourian
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Play It Safe: Manage Security Risks - Google Certificate
Play It Safe: Manage Security Risks - Google CertificatePlay It Safe: Manage Security Risks - Google Certificate
Play It Safe: Manage Security Risks - Google Certificate
VICTOR MAESTRE RAMIREZ
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Raffi Khatchadourian
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Vaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without HallucinationsVaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without Hallucinations
john409870
 
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptxWebinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
MSP360
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
MINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PRMINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PR
MIND CTI
 
TrsLabs - Leverage the Power of UPI Payments
TrsLabs - Leverage the Power of UPI PaymentsTrsLabs - Leverage the Power of UPI Payments
TrsLabs - Leverage the Power of UPI Payments
Trs Labs
 
The Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdfThe Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdf
Precisely
 
TrsLabs - AI Agents for All - Chatbots to Multi-Agents Systems
TrsLabs - AI Agents for All - Chatbots to Multi-Agents SystemsTrsLabs - AI Agents for All - Chatbots to Multi-Agents Systems
TrsLabs - AI Agents for All - Chatbots to Multi-Agents Systems
Trs Labs
 
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Raffi Khatchadourian
 

Nagios Conference 2012 - Anders Haal - Why dynamic and adaptive thresholds matters